湿敏陶瓷

更新时间:2023-01-08 15:55

湿敏陶瓷是指对空气或其他气体、液体和固体物质中水分含量敏感的陶瓷材料。即空气中湿度的变化,或物质中水分含量的变化,能引起陶瓷材料的某些物理化学性质(如电阻率、相对介电常数等)明显的变化,这种变化具有规律性,且稳定性、重复性和可逆性好,因而,人们可以利用这种变化规律精确地测量和控制空气中的湿度或物质中的水分含量。

产品分类

1.电阻型湿敏陶瓷材料

这是一类研究最多、应用最广的湿敏陶瓷材料。典型的瓷料是MgCrzO系统,其主要晶相是MgCr2O。TiO作为掺杂改性成分。

2.电容型湿敏陶瓷材料

电容型湿度传感器是利用其电容量和湿度呈线性关系而受到重视,Al2O3膜很容易吸附水汽。多孔氧化铝的相对介电常数为1~10,空气的相对介电常数约等于1,水的相对介电常数约为80。可见,当水汽代替介质中孔内的空气时,介质的相对介电常数将发生很大变化,因而引起元件的电容量变化。Al2O3膜在20世纪70年代采用厚膜技术制备,即介质是采用相对介电常数近70的陶瓷细粉印刷而成,它的传感性能较好,同时具有体积小、可靠性高、成本低、易于和其他厚膜元件.集成电路相配合等优点。近年来,随着薄膜集成电路的应用和镀膜技术的发展,氧化物和其他化合物也能形成镀膜,因而研制成了薄膜型湿度传感器。电容型湿敏陶瓷材料有Al2O3、Ta2O3、Nb2O5、CaF、TaN等。

3.阻抗型湿敏陶瓷材料

当前,这种类型的湿度传感器已较少应用。感湿体是以Al2O膜为介质的阻抗元件。它是在厚为0.38 mm的高纯铝金属板上,采用阳极氧化的方法,在铝极表面形成Al2O3膜,再经185摄氏度、16h的热处理而制成的。

湿敏机理

1.接触晶粒的界面势垒理论

由于湿敏陶瓷为多孔材料,界面接触主要以点接触为主,这样使n型和p型半导体陶瓷的晶粒内部和表面正负离子所处的状态不同。内部离子对称包围,而表面离子则处于未受异性离子屏蔽的不稳定状态,其电子亲和力发生了变化,表现为表面附近能带上弯(n型)或下弯(p型),在半导体陶瓷晶粒接触处产生双势垒曲线,如下图《半导体的表面势》所示。由于晶粒界面势垒的存在,晶粒界面的电阻比晶粒内部大得多。当湿敏陶瓷晶粒晶界处吸收水分子时,由于水分子是一-种强极性物质,其分子结构不对称,在氢原子的一侧具有很强的正电场,使得表面吸附的水分子可以从半导体表面吸附的O2或O中吸取电子,甚至从满带中直接俘获电子。因此将引起晶粒表面电子能态的变化,从而导致晶粒表面电阻和整个元件的电阻变化。对于p型半导体,主要表现为表面俘获电子,形成表面束缚态的负空间电荷,而在表面内层形成自由态的正电荷,该正电荷被氧的施主能级所俘获,使氧的施主能级密度下降,使下弯的能级变平,耗尽层变薄,表面载流子密度增加,电阻率下降。

2.质子导电理论

质子导电理论把分子在晶粒表面的吸附分为三个阶段:第一阶段少量水分子在晶粒之间的颈部吸附,表面化学吸附水的一个羟基首先与高价阳离子结合,水离解出的H+与表面的氧离子形成第二个羟基,羟基解离后的质子由一个位置向另一个位置移动,形成了质子导电;第二阶段是水分子物理吸附在羟基上,形成多分子吸附层,由于水分子的极化,相对介电常数增加,导致离解水分子的能量增高,促进了水分子的离解;第三阶段,不仅在颈部的凹面,而且在平表面也吸附了大量水分子,在两极间形成了连续电解质层,导致电导率随含水量的增加而增加。

免责声明
隐私政策
用户协议
目录 22
0{{catalogNumber[index]}}. {{item.title}}
{{item.title}}